• 类似“生成订单30分钟未支付则自动取消”这种延时任务的实现方案有哪些?
  • 发布于 2个月前
  • 272 热度
    0 评论
引言
在开发中,往往会遇到一些关于延时任务的需求。例如:
1.生成订单30分钟未支付,则自动取消

2.生成订单60秒后,给用户发短信


对上述的任务,我们给一个专业的名字来形容,那就是延时任务 。那么这里就会产生一个问题,这个延时任务 和定时任务 的区别究竟在哪里呢?一共有如下几点区别:
1.定时任务有明确的触发时间,延时任务没有
2.定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期

3.定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务


下面,我们以判断订单是否超时为例,进行方案分析。

方案分析
一.数据库轮询
思路
该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

实现
博主当年早期是用quartz来实现的(实习那会的事),简单介绍一下 maven项目引入一个依赖如下所示:
    <dependency>
    <groupId>org.quartz-scheduler</groupId>
    <artifactId>quartz</artifactId>
    <version>2.2.2</version>
</dependency>
调用Demo类MyJob如下所示:
package com.rjzheng.delay1;

import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;

public class MyJob implements Job {
    public void execute(JobExecutionContext context)
            throws JobExecutionException {
        System.out.println("要去数据库扫描啦。。。");
    }
    // 堆代码 duidaima.com
    public static void main(String[] args) throws Exception {
        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                .withIdentity("job1", "group1").build();
        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger()
                .withIdentity("trigger1", "group3")
                .withSchedule(
                        SimpleScheduleBuilder.simpleSchedule()
                                .withIntervalInSeconds(3).repeatForever())
                .build();
        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }
}
运行代码,可发现每隔3秒,输出如下:
要去数据库扫描啦。。。
优缺点
优点:简单易行,支持集群操作
缺点:
(1)对服务器内存消耗大
(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟

(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大


二.JDK的延迟队列
思路
该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。

DelayedQueue实现工作流程如下图所示

其中:
poll():获取并移除队列的超时元素,没有则返回空

take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。


实现
定义一个类OrderDelay实现Delayed,代码如下:
package com.rjzheng.delay2;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;
public class OrderDelay implements Delayed {

    private String orderId;
    private long timeout;

    OrderDelay(String orderId, long timeout) {
        this.orderId = orderId;
        this.timeout = timeout + System.nanoTime();
    }

    public int compareTo(Delayed other) {
        if (other == this)
            return 0;
        OrderDelay t = (OrderDelay) other;
        long d = (getDelay(TimeUnit.NANOSECONDS) - t
            .getDelay(TimeUnit.NANOSECONDS));
        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    }
    // 堆代码 duidaima.com
    // 返回距离你自定义的超时时间还有多少
    public long getDelay(TimeUnit unit) {
        return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);
    }

    void print() {
        System.out.println(orderId + "编号的订单要删除啦。。。。");
    }
}
运行的测试Demo为,我们设定延迟时间为3秒。
package com.rjzheng.delay2;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;

public class DelayQueueDemo {
  public static void main(String[] args) {
         // TODO Auto-generated method stub
         List<String> list = new ArrayList<String>();
         list.add("00000001");
         list.add("00000002");
         list.add("00000003");
         list.add("00000004");
         list.add("00000005");
         DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>();
         long start = System.currentTimeMillis();
         for(int i = 0;i<5;i++){
          //延迟三秒取出
             queue.put(new OrderDelay(list.get(i),
                     TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));
                 try {
                      queue.take().print();
                      System.out.println("After " +
                              (System.currentTimeMillis()-start) + " MilliSeconds");
             } catch (InterruptedException e) {
                 // TODO Auto-generated catch block
                 e.printStackTrace();
             }
         }
     }

}
输出如下:
00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds
可以看到都是延迟3秒,订单被删除。

优缺点
优点:效率高,任务触发时间延迟低。缺点:(1)服务器重启后,数据全部消失,怕宕机 (2)集群扩展相当麻烦 (3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常 (4)代码复杂度较高

三.时间轮算法
思路
先上一张时间轮的图(这图到处都是啦)

时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

实现
我们用Netty的HashedWheelTimer来实现 给Pom加上下面的依赖
  <dependency>
   <groupId>io.netty</groupId>
   <artifactId>netty-all</artifactId>
   <version>4.1.24.Final</version>
  </dependency>
测试代码HashedWheelTimerTest如下所示:
package com.rjzheng.delay3;

import io.netty.util.HashedWheelTimer;
import io.netty.util.Timeout;
import io.netty.util.Timer;
import io.netty.util.TimerTask;

import java.util.concurrent.TimeUnit;

public class HashedWheelTimerTest {
 static class MyTimerTask implements TimerTask{
  boolean flag;
  public MyTimerTask(boolean flag){
   this.flag = flag;
  }
  public void run(Timeout timeout) throws Exception {
   // TODO Auto-generated method stub
    System.out.println("要去数据库删除订单了。。。。");
             this.flag =false;
  }
 }
 public static void main(String[] argv) {
  MyTimerTask timerTask = new MyTimerTask(true);
        Timer timer = new HashedWheelTimer();
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);
     int i = 1;
        while(timerTask.flag){
         try {
    Thread.sleep(1000);
   } catch (InterruptedException e) {
    // TODO Auto-generated catch block
    e.printStackTrace();
   }
         System.out.println(i+"秒过去了");
         i++;
        }
    }
}
输出如下:
1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了
优缺点
优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。

缺点:
(1)服务器重启后,数据全部消失,怕宕机
(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常


 四.redis缓存
思路一
利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值

zset常用命令:
添加元素:ZADD key score member [[score member] [score member] ...]
按顺序查询元素:ZRANGE key start stop [WITHSCORES]
查询元素score:ZSCORE key member

移除元素:ZREM key member [member ...]


测试如下
# 添加单个元素
redis> ZADD page_rank 10 google.com
(integer) 1
# 添加多个元素
redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"

# 查询元素的score值
redis> ZSCORE page_rank bing.com
"8"

# 移除单个元素
redis> ZREM page_rank google.com
(integer) 1

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示:

实现一
package com.rjzheng.delay4;

import java.util.Calendar;
import java.util.Set;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;

public class AppTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);

    public static Jedis getJedis() {
        return jedisPool.getResource();
    }

    //生产者,生成5个订单放进去
    public void productionDelayMessage() {
        for (int i = 0; i < 5; i++) {
            //延迟3秒
            Calendar cal1 = Calendar.getInstance();
            cal1.add(Calendar.SECOND, 3);
            int second3later = (int)(cal1.getTimeInMillis() / 1000);
            AppTest.getJedis().zadd("OrderId", second3later, "OID0000001" + i);
            System.out.println(System.currentTimeMillis() + "ms:redis生成了一个订单任务:订单ID为" + "OID0000001" + i);
        }
    }

    //消费者,取订单
    public void consumerDelayMessage() {
        Jedis jedis = AppTest.getJedis();
        while (true) {
            Set < Tuple > items = jedis.zrangeWithScores("OrderId", 0, 1);
            if (items == null || items.isEmpty()) {
                System.out.println("当前没有等待的任务");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
                continue;
            }
            int score = (int)((Tuple) items.toArray()[0]).getScore();
            Calendar cal = Calendar.getInstance();
            int nowSecond = (int)(cal.getTimeInMillis() / 1000);
            if (nowSecond >= score) {
                String orderId = ((Tuple) items.toArray()[0]).getElement();
                jedis.zrem("OrderId", orderId);
                System.out.println(System.currentTimeMillis() + "ms:redis消费了一个任务:消费的订单OrderId为" + orderId);
            }
        }
    }
    public static void main(String[] args) {
        AppTest appTest = new AppTest();
        appTest.productionDelayMessage();
        appTest.consumerDelayMessage();
    }

}
此时对应输出如下:
1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010
1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011
1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012
1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013
1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014
1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务

可以看到,几乎都是3秒之后,消费订单。然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码:

ThreadTest


package com.rjzheng.delay4;

import java.util.concurrent.CountDownLatch;

public class ThreadTest {
 private static final int threadNum = 10;
 private static CountDownLatch cdl = new CountDownLatch(threadNum);
 static class DelayMessage implements Runnable{
  public void run() {
   try {
    cdl.await();
   } catch (InterruptedException e) {
    // TODO Auto-generated catch block
    e.printStackTrace();
   }
   AppTest appTest =new AppTest();
   appTest.consumerDelayMessage();
  }
 }
 public static void main(String[] args) {
  AppTest appTest =new AppTest();
  appTest.productionDelayMessage();
  for(int i=0;i<threadNum;i++){
   new Thread(new DelayMessage()).start();
   cdl.countDown();
  }
 }
}

输出如下所示:
1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010
1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011
1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012
1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013
1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014
1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014
1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
显然,出现了多个线程消费同一个资源的情况。

解决方案
(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。
(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的
if(nowSecond >= score){
 String orderId = ((Tuple)items.toArray()[0]).getElement();
 jedis.zrem("OrderId", orderId);
 System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}
修改为
if(nowSecond >= score){
 String orderId = ((Tuple)items.toArray()[0]).getElement();
 Long num = jedis.zrem("OrderId", orderId);
 if( num != null && num>0){
  System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
 }
}
在这种修改后,重新运行ThreadTest类,发现输出正常了

思路二
该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

实现二
在redis.conf中,加入一条配置
notify-keyspace-events Ex
运行代码如下
package com.rjzheng.delay5;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub;

public class RedisTest {
 private static final String ADDR = "127.0.0.1";
 private static final int PORT = 6379;
 private static JedisPool jedis = new JedisPool(ADDR, PORT);
 private static RedisSub sub = new RedisSub();

 public static void init() {
  new Thread(new Runnable() {
   public void run() {
    jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
   }
  }).start();
 }

 public static void main(String[] args) throws InterruptedException {
  init();
  for(int i =0;i<10;i++){
   String orderId = "OID000000"+i;
   jedis.getResource().setex(orderId, 3, orderId);
   System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");
  }
 }

 static class RedisSub extends JedisPubSub {
  @Override
  public void onMessage(String channel, String message) {
   System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");
  }
 }
}
输出如下:
1525096202813ms:OID0000000订单生成
1525096202818ms:OID0000001订单生成
1525096202824ms:OID0000002订单生成
1525096202826ms:OID0000003订单生成
1525096202830ms:OID0000004订单生成
1525096202834ms:OID0000005订单生成
1525096202839ms:OID0000006订单生成
1525096205819ms:OID0000000订单取消
1525096205920ms:OID0000005订单取消
1525096205920ms:OID0000004订单取消
1525096205920ms:OID0000001订单取消
1525096205920ms:OID0000003订单取消
1525096205920ms:OID0000006订单取消
1525096205920ms:OID0000002订单取消
可以明显看到3秒过后,订单取消了。

ps:redis的pub/sub 机制存在一个硬伤,官网内容如下:
原 :Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.

翻 : Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。

优缺点
优点:
(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。
(2)做集群扩展相当方便
(3)时间准确度高

缺点:

(1)需要额外进行redis维护


五.使用消息队列
我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列。

RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter
lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。
优缺点

优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。

缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高


总结
本文总结了目前互联网中,绝大部分的延时任务的实现方案。希望大家在工作中能够有所收获。

其实大家在工作中,百分九十的人还是以业务逻辑为主,很少有机会能够进行方案设计。所以博主不推荐在分布式这块,花太多时间。不过,鉴于现在的面试造火箭,工作拧螺丝现象太过严重,所以,还是简单介绍下。
用户评论