大约十年前,Dan McKinley 的一篇经典雄文《选择无聊的技术》(Choose Boring Technology)在工程师圈子里广为流传。它的核心观点简单而深刻:一家公司的“创新代币”(innovation tokens)是有限的,应该用在刀刃上,而不是随意挥霍在那些闪亮但未经证实的新技术上。
“无聊”的技术,比如 Postgres、Python、PHP,它们的优势不在于新潮,而在于其故障模式和能力边界是众所周知的。当系统在凌晨三点崩溃时,你需要的是一个有大量 Stack Overflow 答案可以求助的领域,而不是一片你必须独自开拓的未知“无人区”。
这个原则,在过去十年里,成为了无数资深工程师的技术选型座右铭。然而,十年后的今天,随着 LLMs 和 Agentic AI 编程工具的崛起,业界仍然认为:这个原则不仅没有过时,反而比以往任何时候都更加重要,甚至更加致命。
AI 时代的“诱惑”与“危险”
AI 编程助手带来了一个全新的变数。这个变数既有趣,又极其危险。这里的“有趣”在于,现代 AI 工具(无论是 Claude 还是 Copilot)已经非常擅长为几乎任何你能想到的技术栈,生成“看起来非常专业”的代码。你给它一个 prompt,让它用最新的 JavaScript 框架、GraphQL federation 和 Kubernetes 来实现一套微服务,它会迅速给你返回一堆代码——这些代码可能遵循了所有社区惯例,命名规范无可挑剔,错误处理看起来也像模像样,甚至,它可能真的能运行。
这就是 AI 的“诱惑”。它让你感觉,掌握任何新技术都不过是弹指一挥间的事。而“危险”也恰恰源于此。当你在一个你不熟悉的技术领域里使用 AI 时,一个致命的问题出现了:你根本无法验证,AI 是不是在“一本正经地胡说八道”(bullshitting you)。
我亲眼见过,有工程师接受了 AI 生成的代码,而这些代码里:
.使用了早已废弃的 API。
.实现了严重的安全反模式。
.制造了只有在生产负载下才会暴露的、极其隐蔽的性能问题。
为什么会这样?因为这些代码“看起来是对的”。但它的错误,是深植于技术细节中的,只有真正熟悉这门技术的人才能一眼看穿。
风险的“乘法效应”
过去,我们说选择一门新技术是增加了一个“未知数”。而在 AI 时代,当你将不熟悉的技术与 AI 生成的代码结合时,你不再是简单地增加未知数,而是在乘以未知数。
你不知道这个框架是否是解决你问题的最佳选择;你不知道 AI 的实现是否遵循了最佳实践;你不知道生成的代码中,哪些是无伤大雅的模板,哪些是核心业务逻辑;你更不知道,这套组合拳将会以何种奇特的方式在未来失效。这已经不是简单的“货物崇拜”(cargo-culting)了,这是指数级的货物崇拜。
注:“货物崇拜”(cargo culting)是一个源自太平洋岛屿的概念,最早用于描述一些岛屿居民对西方物资和技术的崇拜现象。在二战期间,许多西方士兵在这些岛屿上驻扎,带来了大量的物资和现代技术。当地人对这些物品产生了强烈的向往,认为这些物品是神灵的恩赐。
AI 时代的“技术选型第一性原理”
那么,我们该怎么办?答案出奇地简单,它让我们回归到了那个最朴素的原则:
AI 是你所理解技术的“力量倍增器”,却是你不理解技术的“脆弱拐杖”。
当你选择“无聊”的技术,也就是你真正精通的技术时,AI 会变得无比强大。你可以让 Claude 帮你生成 Rails 代码,因为你对 Rails 了如指掌,能轻易发现它何时提出了可疑的建议。你可以让 Copilot 辅助你写 JavaScript,因为你理解这门语言的怪癖,能对它的产出进行事实核查。在这种模式下,AI 是你的副驾驶,为你处理繁琐的路线,而你始终掌握着方向盘。
给 AI 时代开发者的实践指南
那么,在一个充满 AI 编程助手的世界里,我们该如何应用“选择无聊的技术”这一原则呢?这里有三条黄金法则:
1.评估新技术时先自问:“如果 AI 为它生成了代码,我有能力审查吗?” 如果答案是否定的,那么这项技术或许不应该用于任何对你而言是任务关键型(mission-critical)的项目。
2.学习新技术时(当你决定用掉一个“创新代币”时): 请务必花时间深入理解它,达到能对 AI 的建议进行独立事实核查的程度。不要只是复制、粘贴,然后祈祷好运。
3.抵制诱惑: 不要把 AI 工具当作一个借口,让你能同时拥抱一门新语言、一个新框架和一套新基础设施。AI 可能会给你一种“我能搞定一切”的错觉,但你无法真正验证其中任何一环。
小结:理解,是前所未有的宝贵资产
“选择无聊的技术”这个论点的初衷,是为了降低系统的运维复杂性和团队的认知开销。在 AI 时代,这些理由依然成立,但我们又增加了一个更重大的风险:对抗由 AI 带来的、致命的虚假自信。如今的风险更高了,因为 AI 生成的代码质量越来越好,使得发现问题变得更加困难。过去,坏代码通常看起来就很糟糕。现在,有问题的代码可能看起来相当不错,直到你对该领域足够了解,才能注意到那些微妙的致命伤。
所以,我的建议始终不变:当你要解决一个问题时,请使用你已经了解的技术。当你想要学习新东西时,那就专心去学习。不要将 AI 生成的代码,误认为是真正的理解。在一个 AI 可以自信地为你从未用过的技术生成数千行代码的世界里,你自己的、深刻的理解,比以往任何时候都更有价值。
资料链接:
https://mcfunley.com/choose-boring-technology
https://www.brethorsting.com/blog/2025/07/choose-boring-technology,-revisited