在爆火仅四个月后,Manus AI 突然几乎全面撤出中国市场,不仅清空全部社交账号内容,而且国行版本的 Manus 也疑似暂停推进。早在上个月,Manus 联合创始人张涛便曾宣布,公司已将全球总部迁至新加坡,并在东京和加州设有办公室。尽管官方未正面回应,只称是「基于经营效率的调整」,但出海所引发裁员等一连串争议问题,也让外界普遍猜测其是否正在「跑路」。

风波之中,昨天凌晨,Manus 联合创始人季逸超发布了一篇技术博客,试图将外界关注点重新拉回产品技术本身。经过四次重构和数百万真实交互,他在文中坦诚地总结了团队在构建 Manus 过程中积累的经验教训。内容既有实操干货,也不乏反思,对业内同行与普通用户来说,都不失为一份值得一读的参考材料。

技术博客地址:
https://manus.im/blog/Context-Engineering-for-AI-Agents-Lessons-from-Building-Manus
省流版:
1. 押注上下文,不再训练模型
与其耗时训练,不如围绕大模型构造「记忆」和流程。上下文工程让你在几小时而不是几周内发布产品更新。
2. KV-Cache 命中率至关重要
输入越稳定,缓存命中率越高,成本和延迟越低。三条实战建议:
- 避免提示中使用时间戳;
- 只追加上下文,避免修改历史记录;
- 手动标记缓存断点,保障前缀一致性。
3. 工具不要动态添加,而是用「遮蔽」法控制选择
动态修改工具列表会让缓存失效、模型混乱。Manus 使用「遮蔽 token logits」的方法,让模型「看不见」不应调用的工具。
4. 用文件系统承载持久上下文
大模型上下文再长也会被打满。Manus 让模型把长期记忆写入虚拟文件系统,按需读写,实现「外部记忆」,规避信息丢失。
5. 重写 ToDo 清单,是操控注意力的重要方法
模型容易「中途忘记目标」。Manus 会不断用自然语言更新并重述 todo.md 文件,把全局目标拉回注意力焦点,防止任务跑偏。
6. 错误不是要掩盖,而是要保留
失败是构建 Agent 过程中的一部分。保留错误日志(如失败的操作、堆栈信息),能帮助模型更新内部信念,减少重复错误。
7. 少样本提示不是灵丹妙药,要防「同质化陷阱」
模型会盲目模仿上下文中的行为模式。Manus 通过引入结构化变化(如不同措辞或顺序),避免模型在长任务中陷入复制粘贴式幻觉。