• JAVA编程:如何将集合通过Stream.collect() 转换成其他集合/数组
  • 发布于 2个月前
  • 276 热度
    0 评论
  • 封锁爱
  • 0 粉丝 31 篇博客
  •   
正文
Stream流 其实操作分三大块 :
创建
处理
收集

我今天想分享的是 收集 这part的玩法:

OK,开始结合代码示例一起玩下:

  <!--lombok依赖引入,代码简洁一点-->
  <dependency>
      <groupId>org.projectlombok</groupId>
      <artifactId>lombok</artifactId>
      <version>1.18.20</version>
      <scope>compile</scope>
  </dependency>
准备一个UserDTO.java
/**
 * @Author:堆代码 duidaima.com
 * @Date: 2023-3-13 01:25
 * @Description:
 */
@Data
public class UserDTO {
 
    /**
     * 姓名
     */
    private  String name;
    /**
     * 年龄
     */
    private  Integer age;
    /**
     * 性别
     */
    private  String sex;
    /**
     * 是否有方向
     */
    private  Boolean hasOrientation;
 
}
准备一个模拟获取List的函数:
    private static List<UserDTO> getUserList() {
        UserDTO userDTO = new UserDTO();
        userDTO.setName("小冬");
        userDTO.setAge(18);
        userDTO.setSex("男");
        userDTO.setHasOrientation(false);
        UserDTO userDTO2 = new UserDTO();
        userDTO2.setName("小秋");
        userDTO2.setAge(30);
        userDTO2.setSex("男");
        userDTO2.setHasOrientation(true);
        UserDTO userDTO3 = new UserDTO();
        userDTO3.setName("春");
        userDTO3.setAge(18);
        userDTO3.setSex("女");
        userDTO3.setHasOrientation(true);
        List<UserDTO> userList = new ArrayList<>();
        userList.add(userDTO);
        userList.add(userDTO2);
        userList.add(userDTO3);
        return userList;
    }

第一个小玩法
将集合通过Stream.collect() 转换成其他集合/数组
转成  HashSet:
        List<UserDTO> userList = getUserList();
        Stream<UserDTO> usersStream = userList.stream();
        HashSet<UserDTO> usersHashSet = usersStream.collect(Collectors.toCollection(HashSet::new));
转成  SetusersSet :
        List<UserDTO> userList = getUserList();
        Stream<UserDTO> usersStream = userList.stream();
        Set<UserDTO> usersSet = usersStream.collect(Collectors.toSet());
转成  ArrayList:
        List<UserDTO> userList = getUserList();
        Stream<UserDTO> usersStream = userList.stream();
        ArrayList<UserDTO> usersArrayList = usersStream.collect(Collectors.toCollection(ArrayList::new));
转成  Object[] objects :
        List<UserDTO> userList = getUserList();
        Stream<UserDTO> usersStream = userList.stream();
        Object[] objects = usersStream.toArray();
转成  UserDTO[] users :
        List<UserDTO> userList = getUserList();
        Stream<UserDTO> usersStream = userList.stream();
        UserDTO[] users = usersStream.toArray(UserDTO[]::new);
        for (UserDTO user : users) {
            System.out.println(user.toString());
        }

第二个小玩法
聚合(求和、最小、最大、平均值、分组)
找出年龄最大:
// 堆代码 duidaima.com
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Optional<UserDTO> maxUserOptional = 
        usersStream.max((s1, s2) -> s1.getAge() - s2.getAge());
if (maxUserOptional.isPresent()) {
    UserDTO masUser = maxUserOptional.get();
    System.out.println(masUser.toString());
}
List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = userList.stream();
Optional<UserDTO> maxUserOptionalNew = usersStream.max(Comparator.comparingInt(UserDTO::getAge));
if (maxUserOptionalNew.isPresent()) {
    UserDTO masUser = maxUserOptionalNew.get();
    System.out.println(masUser.toString());
}
找出年龄最小:
Optional<UserDTO> minUserOptional = usersStream.min(Comparator.comparingInt(UserDTO::getAge));
if (minUserOptional.isPresent()) {
    UserDTO minUser = minUserOptional.get();
    System.out.println(minUser.toString());
}
Optional<UserDTO> min = usersStream.collect(Collectors.minBy((s1, s2) -> s1.getAge() - s2.getAge()));
求平均值:
List<UserDTO> userList = getUserList();
Stream<UserDTO> usersStream = userList.stream();
Double avgScore = usersStream.collect(Collectors.averagingInt(UserDTO::getAge));
求和:
Integer reduceAgeSum = usersStream.map(UserDTO::getAge).reduce(0, Integer::sum);
int ageSumNew = usersStream.mapToInt(UserDTO::getAge).sum();
统计数量:
long countNew = usersStream.count();
按照具体年龄分组:
//按照具体年龄分组
Map<Integer, List<UserDTO>> ageGroupMap = usersStream.collect(Collectors.groupingBy((UserDTO::getAge)));
分组过程加写判断逻辑:
//按照性别 分为"男"一组  "女"一组
Map<Integer, List<UserDTO>> groupMap = usersStream.collect(Collectors.groupingBy(s -> {
    if (s.getSex().equals("男")) {
        return 1;
    } else {
        return 0;
    }
}));
多级复杂分组:
//多级分组
// 1.先根据年龄分组
// 2.然后再根据性别分组
Map<Integer, Map<String, Map<Integer, List<UserDTO>>>> moreGroupMap = usersStream.collect(Collectors.groupingBy(

        //1.KEY(Integer)             VALUE (Map<String, Map<Integer, List<UserDTO>>)
        UserDTO::getAge, Collectors.groupingBy(
                //2.KEY(String)             VALUE (Map<Integer, List<UserDTO>>)
                UserDTO::getSex, Collectors.groupingBy((userDTO) -> {
                    if (userDTO.getSex().equals("男")) {
                        return 1;
                    } else {
                        return 0;
                    }
                }))));

用户评论