一.Caffeine介绍
1、缓存介绍
缓存(Cache)在代码世界中无处不在。从底层的CPU多级缓存,到客户端的页面缓存,处处都存在着缓存的身影。缓存从本质上来说,是一种空间换时间的手段,通过对数据进行一定的空间安排,使得下次进行数据访问时起到加速的效果。<dependency> <groupId>com.github.ben-manes.caffeine</groupId> <artifactId>caffeine</artifactId> <!--https://mvnrepository.com/artifact/com.github.ben-manes.caffeine/caffeinez找最新版--> <version>3.0.5</version> </dependency>
Cache<Object, Object> cache = Caffeine.newBuilder() //堆代码 duidaima.com //初始数量 .initialCapacity(10) //最大条数 .maximumSize(10) //expireAfterWrite和expireAfterAccess同时存在时,以expireAfterWrite为准 //最后一次写操作后经过指定时间过期 .expireAfterWrite(1, TimeUnit.SECONDS) //最后一次读或写操作后经过指定时间过期 .expireAfterAccess(1, TimeUnit.SECONDS) //监听缓存被移除 .removalListener((key, val, removalCause) -> { }) //记录命中 .recordStats() .build(); cache.put("1","张三"); //张三 System.out.println(cache.getIfPresent("1")); //存储的是默认值 System.out.println(cache.get("2",o -> "默认值"));1.2 Loading Cache自动创建
LoadingCache<String, String> loadingCache = Caffeine.newBuilder() //创建缓存或者最近一次更新缓存后经过指定时间间隔,刷新缓存;refreshAfterWrite仅支持LoadingCache .refreshAfterWrite(10, TimeUnit.SECONDS) .expireAfterWrite(10, TimeUnit.SECONDS) .expireAfterAccess(10, TimeUnit.SECONDS) .maximumSize(10) //根据key查询数据库里面的值,这里是个lamba表达式 .build(key -> new Date().toString());1.3 Async Cache异步获取
AsyncLoadingCache<String, String> asyncLoadingCache = Caffeine.newBuilder() //创建缓存或者最近一次更新缓存后经过指定时间间隔刷新缓存;仅支持LoadingCache .refreshAfterWrite(1, TimeUnit.SECONDS) .expireAfterWrite(1, TimeUnit.SECONDS) .expireAfterAccess(1, TimeUnit.SECONDS) .maximumSize(10) //根据key查询数据库里面的值 .buildAsync(key -> { Thread.sleep(1000); return new Date().toString(); }); //异步缓存返回的是CompletableFuture CompletableFuture<String> future = asyncLoadingCache.get("1"); future.thenAccept(System.out::println);
FIFO 先进先出
@Slf4j public class CacheTest { /** * 缓存大小淘汰 */ @Test public void maximumSizeTest() throws InterruptedException { Cache<Integer, Integer> cache = Caffeine.newBuilder() //超过10个后会使用W-TinyLFU算法进行淘汰 .maximumSize(10) .evictionListener((key, val, removalCause) -> { log.info("淘汰缓存:key:{} val:{}", key, val); }) .build(); for (int i = 1; i < 20; i++) { cache.put(i, i); } Thread.sleep(500);//缓存淘汰是异步的 // 打印还没被淘汰的缓存 System.out.println(cache.asMap()); } /** * 权重淘汰 */ @Test public void maximumWeightTest() throws InterruptedException { Cache<Integer, Integer> cache = Caffeine.newBuilder() //限制总权重,若所有缓存的权重加起来>总权重就会淘汰权重小的缓存 .maximumWeight(100) .weigher((Weigher<Integer, Integer>) (key, value) -> key) .evictionListener((key, val, removalCause) -> { log.info("淘汰缓存:key:{} val:{}", key, val); }) .build(); //总权重其实是=所有缓存的权重加起来 int maximumWeight = 0; for (int i = 1; i < 20; i++) { cache.put(i, i); maximumWeight += i; } System.out.println("总权重=" + maximumWeight); Thread.sleep(500);//缓存淘汰是异步的 // 打印还没被淘汰的缓存 System.out.println(cache.asMap()); } /** * 访问后到期(每次访问都会重置时间,也就是说如果一直被访问就不会被淘汰) */ @Test public void expireAfterAccessTest() throws InterruptedException { Cache<Integer, Integer> cache = Caffeine.newBuilder() .expireAfterAccess(1, TimeUnit.SECONDS) //可以指定调度程序来及时删除过期缓存项,而不是等待Caffeine触发定期维护 //若不设置scheduler,则缓存会在下一次调用get的时候才会被动删除 .scheduler(Scheduler.systemScheduler()) .evictionListener((key, val, removalCause) -> { log.info("淘汰缓存:key:{} val:{}", key, val); }) .build(); cache.put(1, 2); System.out.println(cache.getIfPresent(1)); Thread.sleep(3000); System.out.println(cache.getIfPresent(1));//null } /** * 写入后到期 */ @Test public void expireAfterWriteTest() throws InterruptedException { Cache<Integer, Integer> cache = Caffeine.newBuilder() .expireAfterWrite(1, TimeUnit.SECONDS) //可以指定调度程序来及时删除过期缓存项,而不是等待Caffeine触发定期维护 //若不设置scheduler,则缓存会在下一次调用get的时候才会被动删除 .scheduler(Scheduler.systemScheduler()) .evictionListener((key, val, removalCause) -> { log.info("淘汰缓存:key:{} val:{}", key, val); }) .build(); cache.put(1, 2); Thread.sleep(3000); System.out.println(cache.getIfPresent(1));//null } }3、刷新机制
private static int NUM = 0; @Test public void refreshAfterWriteTest() throws InterruptedException { LoadingCache<Integer, Integer> cache = Caffeine.newBuilder() .refreshAfterWrite(1, TimeUnit.SECONDS) //模拟获取数据,每次获取就自增1 .build(integer -> ++NUM); //获取ID=1的值,由于缓存里还没有,所以会自动放入缓存 System.out.println(cache.get(1));// 1 // 延迟2秒后,理论上自动刷新缓存后取到的值是2 // 但其实不是,值还是1,因为refreshAfterWrite并不是设置了n秒后重新获取就会自动刷新 // 而是x秒后&&第二次调用getIfPresent的时候才会被动刷新 Thread.sleep(2000); System.out.println(cache.getIfPresent(1));// 1 //此时才会刷新缓存,而第一次拿到的还是旧值 System.out.println(cache.getIfPresent(1));// 2 }4、统计
LoadingCache<String, String> cache = Caffeine.newBuilder() //创建缓存或者最近一次更新缓存后经过指定时间间隔,刷新缓存;refreshAfterWrite仅支持LoadingCache .refreshAfterWrite(1, TimeUnit.SECONDS) .expireAfterWrite(1, TimeUnit.SECONDS) .expireAfterAccess(1, TimeUnit.SECONDS) .maximumSize(10) //开启记录缓存命中率等信息 .recordStats() //根据key查询数据库里面的值 .build(key -> { Thread.sleep(1000); return new Date().toString(); }); cache.put("1", "shawn"); cache.get("1"); /* * hitCount :命中的次数 * missCount:未命中次数 * requestCount:请求次数 * hitRate:命中率 * missRate:丢失率 * loadSuccessCount:成功加载新值的次数 * loadExceptionCount:失败加载新值的次数 * totalLoadCount:总条数 * loadExceptionRate:失败加载新值的比率 * totalLoadTime:全部加载时间 * evictionCount:丢失的条数 */ System.out.println(cache.stats());5、总结
设置 maxSize、expireAfterWrite/expireAfterAccess,不设置 refreshAfterWrite 数据一致性好,不会获取到旧数据,但是性能没那么好(对比起来),适合获取数据时不耗时的场景
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-cache</artifactId> </dependency> <dependency> <groupId>com.github.ben-manes.caffeine</groupId> <artifactId>caffeine</artifactId> </dependency>2.2 缓存常量CacheConstants
public class CacheConstants { /** * 默认过期时间(配置类中我使用的时间单位是秒,所以这里如 3*60 为3分钟) */ public static final int DEFAULT_EXPIRES = 3 * 60; public static final int EXPIRES_5_MIN = 5 * 60; public static final int EXPIRES_10_MIN = 10 * 60; public static final String GET_USER = "GET:USER"; public static final String GET_DYNAMIC = "GET:DYNAMIC"; }2.3 缓存配置类CacheConfig
@Configuration @EnableCaching public class CacheConfig { /** * Caffeine配置说明: * initialCapacity=[integer]: 初始的缓存空间大小 * maximumSize=[long]: 缓存的最大条数 * maximumWeight=[long]: 缓存的最大权重 * expireAfterAccess=[duration]: 最后一次写入或访问后经过固定时间过期 * expireAfterWrite=[duration]: 最后一次写入后经过固定时间过期 * refreshAfterWrite=[duration]: 创建缓存或者最近一次更新缓存后经过固定的时间间隔,刷新缓存 * weakKeys: 打开key的弱引用 * weakValues:打开value的弱引用 * softValues:打开value的软引用 * recordStats:开发统计功能 * 注意: * expireAfterWrite和expireAfterAccess同事存在时,以expireAfterWrite为准。 * maximumSize和maximumWeight不可以同时使用 * weakValues和softValues不可以同时使用 */ @Bean public CacheManager cacheManager() { SimpleCacheManager cacheManager = new SimpleCacheManager(); List<CaffeineCache> list = new ArrayList<>(); //循环添加枚举类中自定义的缓存,可以自定义 for (CacheEnum cacheEnum : CacheEnum.values()) { list.add(new CaffeineCache(cacheEnum.getName(), Caffeine.newBuilder() .initialCapacity(50) .maximumSize(1000) .expireAfterAccess(cacheEnum.getExpires(), TimeUnit.SECONDS) .build())); } cacheManager.setCaches(list); return cacheManager; } }2.4 调用缓存
/** * value:缓存key的前缀。 * key:缓存key的后缀。 * sync:设置如果缓存过期是不是只放一个请求去请求数据库,其他请求阻塞,默认是false(根据个人需求)。 * unless:不缓存空值,这里不使用,会报错 * 查询用户信息类 * 如果需要加自定义字符串,需要用单引号 * 如果查询为null,也会被缓存 */ @Cacheable(value = CacheConstants.GET_USER,key = "'user'+#userId",sync = true) @CacheEvict public UserEntity getUserByUserId(Integer userId){ UserEntity userEntity = userMapper.findById(userId); System.out.println("查询了数据库"); return userEntity; }