<dependency> <groupId>io.github.burukeyou</groupId> <artifactId>jdframe</artifactId> <version>0.1.7</version> </dependency>1.2、案例
@Data @AllArgsConstructor @NoArgsConstructor publicclass Student { privateint id; private String name; private String school; private String level; private Integer age; private BigDecimal score; private Integer rank; public Student(String level, BigDecimal score) { this.level = level; this.score = score; } public Student(int id, String name, String school, String level, Integer age, BigDecimal score) { this.id = id; this.name = name; this.school = school; this.level = level; this.age = age; this.score = score; } } static List<Student> studentList = new ArrayList<>(); static { studentList.add(new Student(1,"a","一中","一年级",11, new BigDecimal(1))); studentList.add(new Student(2,"a","一中","一年级",11, new BigDecimal(1))); studentList.add(new Student(3,"b","一中","三年级",12, new BigDecimal(2))); studentList.add(new Student(4,"c","二中","一年级",13, new BigDecimal(3))); studentList.add(new Student(5,"d","二中","一年级",14, new BigDecimal(4))); studentList.add(new Student(6,"e","三中","二年级",14, new BigDecimal(5))); studentList.add(new Student(7,"e","三中","二年级",15, new BigDecimal(5))); } // 等价于SQL: // select school,sum(score) // from students // where age is not null and age >=9 and age <= 16 // group by school // order by sum(score) desc // limit 2 SDFrame<FI2<String, BigDecimal>> sdf2 = SDFrame.read(studentList) .whereNotNull(Student::getAge) .whereBetween(Student::getAge,9,16) .groupBySum(Student::getSchool, Student::getScore) .sortDesc(FI2::getC2) .cutFirst(2); sdf2.show();输出信息:
二中 7
void show(int n); // 打印矩阵信息到控制台 List<String> columns(); // 获取矩阵的表头字段名 List<R> col(Function<T, R> function); // 获取矩阵某一列值 T head(); // 获取第一个元素 List<T> head(int n); // 获取前n个元素 T tail(); // 获取最后一个元素 List<T> tail(int n); // 获取后n个元素2.2、筛选相关
SDFrame.read(studentList) .whereBetween(Student::getAge,3,6) // 过滤年龄在[3,6]岁的 .whereBetweenR(Student::getAge,3,6) // 过滤年龄在(3,6]岁的, 不含3岁 .whereBetweenL(Student::getAge,3,6) // 过滤年龄在[3,6)岁的, 不含6岁 .whereNotNull(Student::getName) // 过滤名字不为空的数据, 兼容了空字符串''的判断 .whereGt(Student::getAge,3) // 过滤年龄大于3岁 .whereGe(Student::getAge,3) // 过滤年龄大于等于3岁 .whereLt(Student::getAge,3) // 过滤年龄小于3岁的 .whereIn(Student::getAge, Arrays.asList(3,7,8)) // 过滤年龄为3岁 或者7岁 或者 8岁的数据 .whereNotIn(Student::getAge, Arrays.asList(3,7,8)) // 过滤年龄不为为3岁 或者7岁 或者 8岁的数据 .whereEq(Student::getAge,3) // 过滤年龄等于3岁的数据 .whereNotEq(Student::getAge,3) // 过滤年龄不等于3岁的数据 .whereLike(Student::getName,"jay") // 模糊查询,等价于 like "%jay%" .whereLikeLeft(Student::getName,"jay") // 模糊查询,等价于 like "jay%" .whereLikeRight(Student::getName,"jay"); // 模糊查询,等价于 like "%jay"2.3、汇总相关
JDFrame<Student> frame = JDFrame.read(studentList); Student s1 = frame.max(Student::getAge);// 获取年龄最大的学生 Integer s2 = frame.maxValue(Student::getAge); // 获取学生里最大的年龄 Student s3 = frame.min(Student::getAge);// 获取年龄最小的学生 Integer s4 = frame.minValue(Student::getAge); // 获取学生里最小的年龄 BigDecimal s5 = frame.avg(Student::getAge); // 获取所有学生的年龄的平均值 BigDecimal s6 = frame.sum(Student::getAge); // 获取所有学生的年龄合计 MaxMin<Student> s7 = frame.maxMin(Student::getAge); // 同时获取年龄最大和最小的学生 MaxMin<Integer> s8 = frame.maxMinValue(Student::getAge); // 同时获取学生里最大和最小的年龄2.4、去重相关
List<Student> std = null; std = SDFrame.read(studentList).distinct().toLists(); // 根据对象hashCode去重 std = SDFrame.read(studentList).distinct(Student::getSchool).toLists(); // 根据学校名去重 std = SDFrame.read(studentList).distinct(e -> e.getSchool() + e.getLevel()).toLists(); // 根据学校名拼接级别去重复 std =SDFrame.read(studentList).distinct(Student::getSchool).distinct(Student::getLevel).toLists(); // 先根据学校名去除重复再根据级别去除重复2.5、简单分组聚合相关
JDFrame<Student> frame = JDFrame.from(studentList); // 等价于 select school,sum(age) ... group by school List<FI2<String, BigDecimal>> a = frame.groupBySum(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,max(age) ... group by school List<FI2<String, Integer>> a2 = frame.groupByMaxValue(Student::getSchool, Student::getAge).toLists(); // 与 groupByMaxValue 含义一致,只是返回的是最大的值对象 List<FI2<String, Student>> a3 = frame.groupByMax(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,min(age) ... group by school List<FI2<String, Integer>> a4 = frame.groupByMinValue(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,count(*) ... group by school List<FI2<String, Long>> a5 = frame.groupByCount(Student::getSchool).toLists(); // 等价于 select school,avg(age) ... group by school List<FI2<String, BigDecimal>> a6 = frame.groupByAvg(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,sum(age),count(age) group by school List<FI3<String, BigDecimal, Long>> a7 = frame.groupBySumCount(Student::getSchool, Student::getAge).toLists(); // (二级分组)等价于 select school,level,sum(age),count(age) group by school,level List<FI3<String, String, BigDecimal>> a8 = frame.groupBySum(Student::getSchool, Student::getLevel, Student::getAge).toLists(); // (三级分组)等价于 select school,level,name,sum(age),count(age) group by school,level,name List<FI4<String, String, String, BigDecimal>> a9 = frame.groupBySum(Student::getSchool, Student::getLevel, Student::getName, Student::getAge).toLists();2.6、排序相关
// 等价于 order by age desc SDFrame.read(studentList).sortDesc(Student::getAge); // 等价于 order by age desc, level asc SDFrame.read(studentList).sortDesc(Student::getAge).sortAsc(Student::getLevel); // 等价于 order by age asc SDFrame.read(studentList).sortAsc(Student::getAge); // 使用Comparator 排序 SDFrame.read(studentList).sortAsc(Comparator.comparing(e -> e.getLevel() + e.getId()));2.7、连接矩阵相关
append(T t); // 等价于集合 add union(IFrame<T> other); // 等价于集合 addAll join(IFrame<K> other, JoinOn<T,K> on, Join<T,K,R> join); // 等价于 sql内连接 leftJoin(IFrame<K> other, JoinOn<T,K> on, Join<T,K,R> join); // 等价于sql左连接,如果左连接失败,K值为null,需手动判断 rightJoin(IFrame<K> other, JoinOn<T,K> on, Join<T,K,R> join); // 等价于sql右连接,如果右连接失败,T值为null,需手动判断内连接例子:
System.out.println("======== 矩阵1 ======="); SDFrame<Student> sdf = SDFrame.read(studentList); sdf.show(20); // 获取学生年龄在9到16岁的学学校合计分数最高的前10名 SDFrame<FI2<String, BigDecimal>> sdf2 = SDFrame.read(studentList) .whereNotNull(Student::getAge) .whereBetween(Student::getAge,9,16) .groupBySum(Student::getSchool, Student::getScore) .sortDesc(FI2::getC2) .cutFirst(10); System.out.println("======== 矩阵2 ======="); sdf2.show(); SDFrame<UserInfo> frame = sdf.join(sdf2, (a, b) -> a.getSchool().equals(b.getC1()), (a, b) -> { UserInfo userInfo = new UserInfo(); userInfo.setKey1(a.getSchool()); userInfo.setKey2(b.getC2().intValue()); userInfo.setKey3(String.valueOf(a.getId())); return userInfo; }); System.out.println("======== 连接后结果 ======="); frame.show(5);打印信息:
======== 矩阵1 ======= id name school level age score rank 1 a 一中 一年级 11 1 2 a 一中 一年级 11 1 3 b 一中 一年级 12 2 4 c 二中 一年级 13 3 5 d 二中 一年级 14 4 6 e 三中 二年级 14 5 7 e 三中 二年级 15 5 ======== 矩阵2 ======= c1 c2 三中 10 二中 7 一中 4 ======== 连接后结果 ======= key1 key2 key3 key4 一中 4 1 一中 4 2 一中 4 3 二中 7 4 二中 7 5类似于
select a.*,b.* from sdf a inner join sdf2 b on a.school = b.c12.8、其他
// 等价于 select round(score*100,2) from student SDFrame<Student> map2 = SDFrame.read(studentList).mapPercent(Student::getScore, Student::setScore,2);分区:
List<List<Student>> t = SDFrame.read(studentList).partition(5).toLists();生成序号:
SDFrame.read(studentList) .sortDesc(Student::getAge) .addSortNoCol(Student::setRank) .show(30);输出信息:
id name school level age score rank 7 e 三中 二年级 15 5 0 5 d 二中 一年级 14 4 1 6 e 三中 二年级 14 5 2 4 c 二中 一年级 13 3 3 3 b 一中 三年级 12 2 4 1 a 一中 一年级 11 1 5 2 a 一中 一年级 11 1 6生成排名号:
SDFrame<Student> df = SDFrame.read(studentList).addRankingSameColDesc(Student::getAge, Student::setRank); df.show(20);输出信息:
id name school level age score rank 7 e 三中 二年级 15 5 1 5 d 二中 一年级 14 4 2 6 e 三中 二年级 14 5 2 4 c 二中 一年级 13 3 3 3 b 一中 一年级 12 2 4 1 a 一中 一年级 11 1 5 2 a 一中 一年级 11 1 5补充条目:
// 所有需要的学校条目 List<String> allDim = Arrays.asList("一中","二中","三中","四中"); // 根据学校字段和allDim比较去补充缺失的条目, 缺失的学校按照ReplenishFunction生成补充条目作为结果一起返回 SDFrame.read(studentList).replenish(Student::getSchool,allDim,(school) -> new Student(school)).show();输出:
id name school level age score rank 1 a 一中 一年级 11 1 2 a 一中 一年级 11 1 3 b 一中 一年级 12 2 4 c 二中 一年级 13 3 5 d 二中 一年级 14 4 6 e 三中 二年级 14 5 7 e 三中 二年级 15 5 0 四中2、分组补充组内缺失的条目
SDFrame.read(studentList).replenish(Student::getSchool,Student::getLevel,(school,level) -> new Student(school,level)).show(30);输出
id name school level age score rank 1 a 一中 一年级 11 1 2 a 一中 一年级 11 1 3 b 一中 三年级 12 2 0 一中 二年级 4 c 二中 一年级 13 3 5 d 二中 一年级 14 4 0 二中 三年级 0 二中 二年级 6 e 三中 二年级 14 5 7 e 三中 二年级 15 5 0 三中 一年级 0 三中 三年级应用场景举例:要求计算近两年每个月的数据,但是数据的年月可能不全,这时就补充缺失的年月数据作为结果一起返回