闽公网安备 35020302035485号
<dependency>
<groupId>io.github.burukeyou</groupId>
<artifactId>jdframe</artifactId>
<version>0.1.7</version>
</dependency>
1.2、案例@Data
@AllArgsConstructor
@NoArgsConstructor
publicclass Student {
privateint id;
private String name;
private String school;
private String level;
private Integer age;
private BigDecimal score;
private Integer rank;
public Student(String level, BigDecimal score) {
this.level = level;
this.score = score;
}
public Student(int id, String name, String school, String level, Integer age, BigDecimal score) {
this.id = id;
this.name = name;
this.school = school;
this.level = level;
this.age = age;
this.score = score;
}
}
static List<Student> studentList = new ArrayList<>();
static {
studentList.add(new Student(1,"a","一中","一年级",11, new BigDecimal(1)));
studentList.add(new Student(2,"a","一中","一年级",11, new BigDecimal(1)));
studentList.add(new Student(3,"b","一中","三年级",12, new BigDecimal(2)));
studentList.add(new Student(4,"c","二中","一年级",13, new BigDecimal(3)));
studentList.add(new Student(5,"d","二中","一年级",14, new BigDecimal(4)));
studentList.add(new Student(6,"e","三中","二年级",14, new BigDecimal(5)));
studentList.add(new Student(7,"e","三中","二年级",15, new BigDecimal(5)));
}
// 等价于SQL:
// select school,sum(score)
// from students
// where age is not null and age >=9 and age <= 16
// group by school
// order by sum(score) desc
// limit 2
SDFrame<FI2<String, BigDecimal>> sdf2 = SDFrame.read(studentList)
.whereNotNull(Student::getAge)
.whereBetween(Student::getAge,9,16)
.groupBySum(Student::getSchool, Student::getScore)
.sortDesc(FI2::getC2)
.cutFirst(2);
sdf2.show();
输出信息:二中 7
void show(int n); // 打印矩阵信息到控制台 List<String> columns(); // 获取矩阵的表头字段名 List<R> col(Function<T, R> function); // 获取矩阵某一列值 T head(); // 获取第一个元素 List<T> head(int n); // 获取前n个元素 T tail(); // 获取最后一个元素 List<T> tail(int n); // 获取后n个元素2.2、筛选相关
SDFrame.read(studentList)
.whereBetween(Student::getAge,3,6) // 过滤年龄在[3,6]岁的
.whereBetweenR(Student::getAge,3,6) // 过滤年龄在(3,6]岁的, 不含3岁
.whereBetweenL(Student::getAge,3,6) // 过滤年龄在[3,6)岁的, 不含6岁
.whereNotNull(Student::getName) // 过滤名字不为空的数据, 兼容了空字符串''的判断
.whereGt(Student::getAge,3) // 过滤年龄大于3岁
.whereGe(Student::getAge,3) // 过滤年龄大于等于3岁
.whereLt(Student::getAge,3) // 过滤年龄小于3岁的
.whereIn(Student::getAge, Arrays.asList(3,7,8)) // 过滤年龄为3岁 或者7岁 或者 8岁的数据
.whereNotIn(Student::getAge, Arrays.asList(3,7,8)) // 过滤年龄不为为3岁 或者7岁 或者 8岁的数据
.whereEq(Student::getAge,3) // 过滤年龄等于3岁的数据
.whereNotEq(Student::getAge,3) // 过滤年龄不等于3岁的数据
.whereLike(Student::getName,"jay") // 模糊查询,等价于 like "%jay%"
.whereLikeLeft(Student::getName,"jay") // 模糊查询,等价于 like "jay%"
.whereLikeRight(Student::getName,"jay"); // 模糊查询,等价于 like "%jay"
2.3、汇总相关JDFrame<Student> frame = JDFrame.read(studentList); Student s1 = frame.max(Student::getAge);// 获取年龄最大的学生 Integer s2 = frame.maxValue(Student::getAge); // 获取学生里最大的年龄 Student s3 = frame.min(Student::getAge);// 获取年龄最小的学生 Integer s4 = frame.minValue(Student::getAge); // 获取学生里最小的年龄 BigDecimal s5 = frame.avg(Student::getAge); // 获取所有学生的年龄的平均值 BigDecimal s6 = frame.sum(Student::getAge); // 获取所有学生的年龄合计 MaxMin<Student> s7 = frame.maxMin(Student::getAge); // 同时获取年龄最大和最小的学生 MaxMin<Integer> s8 = frame.maxMinValue(Student::getAge); // 同时获取学生里最大和最小的年龄2.4、去重相关
List<Student> std = null; std = SDFrame.read(studentList).distinct().toLists(); // 根据对象hashCode去重 std = SDFrame.read(studentList).distinct(Student::getSchool).toLists(); // 根据学校名去重 std = SDFrame.read(studentList).distinct(e -> e.getSchool() + e.getLevel()).toLists(); // 根据学校名拼接级别去重复 std =SDFrame.read(studentList).distinct(Student::getSchool).distinct(Student::getLevel).toLists(); // 先根据学校名去除重复再根据级别去除重复2.5、简单分组聚合相关
JDFrame<Student> frame = JDFrame.from(studentList); // 等价于 select school,sum(age) ... group by school List<FI2<String, BigDecimal>> a = frame.groupBySum(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,max(age) ... group by school List<FI2<String, Integer>> a2 = frame.groupByMaxValue(Student::getSchool, Student::getAge).toLists(); // 与 groupByMaxValue 含义一致,只是返回的是最大的值对象 List<FI2<String, Student>> a3 = frame.groupByMax(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,min(age) ... group by school List<FI2<String, Integer>> a4 = frame.groupByMinValue(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,count(*) ... group by school List<FI2<String, Long>> a5 = frame.groupByCount(Student::getSchool).toLists(); // 等价于 select school,avg(age) ... group by school List<FI2<String, BigDecimal>> a6 = frame.groupByAvg(Student::getSchool, Student::getAge).toLists(); // 等价于 select school,sum(age),count(age) group by school List<FI3<String, BigDecimal, Long>> a7 = frame.groupBySumCount(Student::getSchool, Student::getAge).toLists(); // (二级分组)等价于 select school,level,sum(age),count(age) group by school,level List<FI3<String, String, BigDecimal>> a8 = frame.groupBySum(Student::getSchool, Student::getLevel, Student::getAge).toLists(); // (三级分组)等价于 select school,level,name,sum(age),count(age) group by school,level,name List<FI4<String, String, String, BigDecimal>> a9 = frame.groupBySum(Student::getSchool, Student::getLevel, Student::getName, Student::getAge).toLists();2.6、排序相关
// 等价于 order by age desc SDFrame.read(studentList).sortDesc(Student::getAge); // 等价于 order by age desc, level asc SDFrame.read(studentList).sortDesc(Student::getAge).sortAsc(Student::getLevel); // 等价于 order by age asc SDFrame.read(studentList).sortAsc(Student::getAge); // 使用Comparator 排序 SDFrame.read(studentList).sortAsc(Comparator.comparing(e -> e.getLevel() + e.getId()));2.7、连接矩阵相关
append(T t); // 等价于集合 add union(IFrame<T> other); // 等价于集合 addAll join(IFrame<K> other, JoinOn<T,K> on, Join<T,K,R> join); // 等价于 sql内连接 leftJoin(IFrame<K> other, JoinOn<T,K> on, Join<T,K,R> join); // 等价于sql左连接,如果左连接失败,K值为null,需手动判断 rightJoin(IFrame<K> other, JoinOn<T,K> on, Join<T,K,R> join); // 等价于sql右连接,如果右连接失败,T值为null,需手动判断内连接例子:
System.out.println("======== 矩阵1 =======");
SDFrame<Student> sdf = SDFrame.read(studentList);
sdf.show(20);
// 获取学生年龄在9到16岁的学学校合计分数最高的前10名
SDFrame<FI2<String, BigDecimal>> sdf2 = SDFrame.read(studentList)
.whereNotNull(Student::getAge)
.whereBetween(Student::getAge,9,16)
.groupBySum(Student::getSchool, Student::getScore)
.sortDesc(FI2::getC2)
.cutFirst(10);
System.out.println("======== 矩阵2 =======");
sdf2.show();
SDFrame<UserInfo> frame = sdf.join(sdf2, (a, b) -> a.getSchool().equals(b.getC1()), (a, b) -> {
UserInfo userInfo = new UserInfo();
userInfo.setKey1(a.getSchool());
userInfo.setKey2(b.getC2().intValue());
userInfo.setKey3(String.valueOf(a.getId()));
return userInfo;
});
System.out.println("======== 连接后结果 =======");
frame.show(5);
打印信息:======== 矩阵1 ======= id name school level age score rank 1 a 一中 一年级 11 1 2 a 一中 一年级 11 1 3 b 一中 一年级 12 2 4 c 二中 一年级 13 3 5 d 二中 一年级 14 4 6 e 三中 二年级 14 5 7 e 三中 二年级 15 5 ======== 矩阵2 ======= c1 c2 三中 10 二中 7 一中 4 ======== 连接后结果 ======= key1 key2 key3 key4 一中 4 1 一中 4 2 一中 4 3 二中 7 4 二中 7 5类似于
select a.*,b.* from sdf a inner join sdf2 b on a.school = b.c12.8、其他
// 等价于 select round(score*100,2) from student SDFrame<Student> map2 = SDFrame.read(studentList).mapPercent(Student::getScore, Student::setScore,2);分区:
List<List<Student>> t = SDFrame.read(studentList).partition(5).toLists();生成序号:
SDFrame.read(studentList)
.sortDesc(Student::getAge)
.addSortNoCol(Student::setRank)
.show(30);
输出信息:id name school level age score rank 7 e 三中 二年级 15 5 0 5 d 二中 一年级 14 4 1 6 e 三中 二年级 14 5 2 4 c 二中 一年级 13 3 3 3 b 一中 三年级 12 2 4 1 a 一中 一年级 11 1 5 2 a 一中 一年级 11 1 6生成排名号:
SDFrame<Student> df = SDFrame.read(studentList).addRankingSameColDesc(Student::getAge, Student::setRank); df.show(20);输出信息:
id name school level age score rank 7 e 三中 二年级 15 5 1 5 d 二中 一年级 14 4 2 6 e 三中 二年级 14 5 2 4 c 二中 一年级 13 3 3 3 b 一中 一年级 12 2 4 1 a 一中 一年级 11 1 5 2 a 一中 一年级 11 1 5补充条目:
// 所有需要的学校条目
List<String> allDim = Arrays.asList("一中","二中","三中","四中");
// 根据学校字段和allDim比较去补充缺失的条目, 缺失的学校按照ReplenishFunction生成补充条目作为结果一起返回
SDFrame.read(studentList).replenish(Student::getSchool,allDim,(school) -> new Student(school)).show();
输出:id name school level age score rank 1 a 一中 一年级 11 1 2 a 一中 一年级 11 1 3 b 一中 一年级 12 2 4 c 二中 一年级 13 3 5 d 二中 一年级 14 4 6 e 三中 二年级 14 5 7 e 三中 二年级 15 5 0 四中2、分组补充组内缺失的条目
SDFrame.read(studentList).replenish(Student::getSchool,Student::getLevel,(school,level) -> new Student(school,level)).show(30);输出
id name school level age score rank 1 a 一中 一年级 11 1 2 a 一中 一年级 11 1 3 b 一中 三年级 12 2 0 一中 二年级 4 c 二中 一年级 13 3 5 d 二中 一年级 14 4 0 二中 三年级 0 二中 二年级 6 e 三中 二年级 14 5 7 e 三中 二年级 15 5 0 三中 一年级 0 三中 三年级应用场景举例:要求计算近两年每个月的数据,但是数据的年月可能不全,这时就补充缺失的年月数据作为结果一起返回