闽公网安备 35020302035485号
import openai
openai.api_key = "your_sk"
# prompt (assuming md_resume and job_desciption have been defined)
prompt = f"""
I have a resume formatted in Markdown and a job description. \
Please adapt my resume to better align with the job requirements while \
maintaining a professional tone. Tailor my skills, experiences, and \
achievements to highlight the most relevant points for the position. \
Ensure that my resume still reflects my unique qualifications and strengths \
but emphasizes the skills and experiences that match the job description.
### Here is my resume in Markdown:
{md_resume}
### Here is the job description:
{job_desciption}
Please modify the resume to:
- Use keywords and phrases from the job description.
- Adjust the bullet points under each role to emphasize relevant skills and achievements.
- Make sure my experiences are presented in a way that matches the required qualifications.
- Maintain clarity, conciseness, and professionalism throughout.
Return the updated resume in Markdown format.
"""
# 堆代码 duidaima.com
# make api call
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
],
temperature = 0.25
)
# extract response
resume = response.choices[0].message.content
通过这种方式,你可以显著提升调整简历的效率,同时确保内容与职位需求高度匹配。4.使用 OpenAI 的 Python API 将整个流程自动化。
import re
from youtube_transcript_api import YouTubeTranscriptApi
youtube_url = "video link here"
# extract video ID with regex
video_id_regex = r'(?:v=|\/)([0-9A-Za-z_-]{11}).*'
match = re.search(video_id_regex, youtube_url)
if match:
return match.group(1)
else:
return None
# extract transcript
text_list = [transcript[i]['text'] for i in range(len(transcript))]
transcript_text = '\n'.join(text_list)
通过这种工具,你可以快速生成技术演讲的摘要和要点,大幅提高信息获取的效率。4.为每个聚类创建一个文件夹,并将相应的文件移动到对应的文件夹中。
from sentence_transformers import SentenceTransformer
# load embedding model
model = SentenceTransformer("all-MiniLM-L6-v2")
# store abstracts in a list
abstract_list = ["abstract 1", "abstract 2"]
# calculate embeddings
embeddings = model.encode(abstract_list)
通过此工具,你可以快速整理并分类大量技术论文,轻松管理和查找所需的文档内容。6.返回相似度得分最高的前 k 个结果。
import fitz # PyMuPDF
def extract_text_chunks(pdf_path, chunk_size, overlap_size):
# Open the PDF file
pdf_document = fitz.open(pdf_path)
chunks = []
# Iterate through each page in the PDF
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
page_text = page.get_text()
# Split the text from the current page into chunks with overlap
start = 0
while start < len(page_text):
end = start + chunk_size
chunk = page_text[start:end]
# Store the page number with the chunk
chunks.append((page_num + 1, chunk))
# Move to the next chunk with the overlap
start += chunk_size - overlap_size
return chunks
# Parameters for extraction
pdf_path = "your_file.pdf"
chunk_size = 1000 # Size of each text chunk in characters
overlap_size = 200 # Overlap size in characters
text_chunks = extract_text_chunks_with_page_numbers(pdf_path, chunk_size, overlap_size)
# Display the chunks with page numbers
for i, (page_number, chunk) in enumerate(text_chunks):
print(f"Chunk {i + 1} (Page {page_number}):\n{chunk}\n{'-' * 50}")
通过这种多模态搜索工具,你可以显著提升在技术报告、研究论文等复杂文档中查找关键内容的效率。将图表和文本结合起来,可以更全面地捕捉有价值的信息。import gradio as gr
import time
def generate_response(message, history):
"""
Your code for generating a response
"""
return response
demo = gr.ChatInterface(
fn=generate_response,
examples=[{"text": "Hello", "files": []}],
title="Echo Bot",
multimodal=True)
demo.launch()
通过这种问答系统,用户可以轻松地查询知识库中的相关信息并获得直接的回答。这种多模态 RAG 系统结合了图像与文本处理能力,适用于技术文档、研究报告或企业内部知识库的复杂查询需求。