Model Properties ------------------------- date:2024-05-25T18:22:56.256494 description:Ultralytics YOLOv10n model author:Ultralytics version:8.1.34 task:detect license:AGPL-3.0 License (https://ultralytics.com/license) docs:https://docs.ultralytics.com stride:32 batch:1 imgsz:[640, 640] names:{0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: '10', 11: '11', 12: '12', 13: '13', 14: '14', 15: '15', 16: '16', 17: '17', 18: '18', 19: '19', 20: '20', 21: '21', 22: '22', 23: '23', 24: '24', 25: '25', 26: '26', 27: '27', 28: '28', 29: '29', 30: '30', 31: '31', 32: '32', 33: '33', 34: '34', 35: '35', 36: '36', 37: '37', 38: '38', 39: '39', 40: '40', 41: '41', 42: '42', 43: '43', 44: '44', 45: '45', 46: '46', 47: '47', 48: '48', 49: '49', 50: '50', 51: '51', 52: '52', 53: '53', 54: '54', 55: '55', 56: '56', 57: '57', 58: '58', 59: '59', 60: '60', 61: '61', 62: '62', 63: '63', 64: '64', 65: '65', 66: '66', 67: '67', 68: '68', 69: '69', 70: '70', 71: '71', 72: '72', 73: '73', 74: '74', 75: '75', 76: '76', 77: '77', 78: '78', 79: '79'} --------------------------------------------------------------- Inputs ------------------------- name:images tensor:Float[1, 3, 640, 640] --------------------------------------------------------------- Outputs ------------------------- name:output0 tensor:Float[1, 300, 6] ---------------------------------------------------------------项目
using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.IO; using System.Linq; using System.Text; using System.Windows.Forms; namespace Onnx_Yolov10_Demo { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string model_path; string classer_path; public string[] class_names; public int class_num; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; int input_height; int input_width; float ratio_height; float ratio_width; InferenceSession onnx_session; int box_num; float conf_threshold; /// <summary> /// 选择图片 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; pictureBox2.Image = null; } /// <summary> /// 堆代码 duidaima.com /// 推理 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; } button2.Enabled = false; pictureBox2.Image = null; textBox1.Text = ""; Application.DoEvents(); Mat image = new Mat(image_path); //图片缩放 int height = image.Rows; int width = image.Cols; Mat temp_image = image.Clone(); if (height > input_height || width > input_width) { float scale = Math.Min((float)input_height / height, (float)input_width / width); OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale)); Cv2.Resize(image, temp_image, new_size); } ratio_height = (float)height / temp_image.Rows; ratio_width = (float)width / temp_image.Cols; Mat input_img = new Mat(); Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0); // Cv2.ImShow("input_img", input_img); //输入Tensor Tensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 }); for (int y = 0; y < input_img.Height; y++) { for (int x = 0; x < input_img.Width; x++) { input_tensor[0, 0, y, x] = input_img.At<Vec3b>(y, x)[0] / 255f; input_tensor[0, 1, y, x] = input_img.At<Vec3b>(y, x)[1] / 255f; input_tensor[0, 2, y, x] = input_img.At<Vec3b>(y, x)[2] / 255f; } } List<NamedOnnxValue> input_container = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor("images", input_tensor) }; //推理 dt1 = DateTime.Now; var ort_outputs = onnx_session.Run(input_container).ToArray(); dt2 = DateTime.Now; float[] data = ort_outputs[0].AsTensor<float>().ToArray(); float[] confidenceInfo = new float[2]; float[] rectData = new float[4]; List<DetectionResult> detResults = new List<DetectionResult>(); for (int i = 0; i < box_num; i++) { Array.Copy(data, i * 6, rectData, 0, 4); Array.Copy(data, i * 6 + 4, confidenceInfo, 0, 2); float score = confidenceInfo[0]; if (score < conf_threshold) { continue; } int Index = (int)confidenceInfo[1]; int _X = (int)(rectData[0] * ratio_width); int _Y = (int)(rectData[1] * ratio_height); int _width = (int)((rectData[2] - rectData[0]) * ratio_width); int _height = (int)((rectData[3] - rectData[1]) * ratio_height); detResults.Add(new DetectionResult( Index, class_names[Index], new Rect(_X, _Y, _width, _height), score)); } //绘制结果 Mat result_image = image.Clone(); foreach (DetectionResult r in detResults) { Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2); Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2); } pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms"; button2.Enabled = true; } /// <summary> ///窗体加载 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void Form1_Load(object sender, EventArgs e) { model_path = "model/yolov10n.onnx"; //创建输出会话,用于输出模型读取信息 SessionOptions options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行 // 创建推理模型类,读取模型文件 onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径 input_height = 640; input_width = 640; box_num = 300; conf_threshold = 0.14f; classer_path = "model/lable.txt"; class_names = File.ReadAllLines(classer_path, Encoding.UTF8); class_num = class_names.Length; image_path = "test_img/zidane.jpg"; pictureBox1.Image = new Bitmap(image_path); this.Text = "C# Onnx yolov10 detection"; } /// <summary> /// 保存 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void button3_Click(object sender, EventArgs e) { if (pictureBox2.Image == null) { return; } Bitmap output = new Bitmap(pictureBox2.Image); SaveFileDialog sdf = new SaveFileDialog(); sdf.Title = "保存"; sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf"; if (sdf.ShowDialog() == DialogResult.OK) { switch (sdf.FilterIndex) { case 1: { output.Save(sdf.FileName, ImageFormat.Jpeg); break; } case 2: { output.Save(sdf.FileName, ImageFormat.Png); break; } case 3: { output.Save(sdf.FileName, ImageFormat.Bmp); break; } case 4: { output.Save(sdf.FileName, ImageFormat.Emf); break; } case 5: { output.Save(sdf.FileName, ImageFormat.Exif); break; } case 6: { output.Save(sdf.FileName, ImageFormat.Gif); break; } case 7: { output.Save(sdf.FileName, ImageFormat.Icon); break; } case 8: { output.Save(sdf.FileName, ImageFormat.Tiff); break; } case 9: { output.Save(sdf.FileName, ImageFormat.Wmf); break; } } MessageBox.Show("保存成功,位置:" + sdf.FileName); } } private void pictureBox1_DoubleClick(object sender, EventArgs e) { ShowNormalImg(pictureBox1.Image); } private void pictureBox2_DoubleClick(object sender, EventArgs e) { ShowNormalImg(pictureBox2.Image); } public void ShowNormalImg(Image img) { if (img == null) return; frmShow frm = new frmShow(); frm.Width = Screen.PrimaryScreen.Bounds.Width; frm.Height = Screen.PrimaryScreen.Bounds.Height; if (frm.Width > img.Width) { frm.Width = img.Width; } if (frm.Height > img.Height) { frm.Height = img.Height; } bool b = frm.richTextBox1.ReadOnly; Clipboard.SetDataObject(img, true); frm.richTextBox1.ReadOnly = false; frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap)); frm.richTextBox1.ReadOnly = b; frm.ShowDialog(); } } public class DetectionResult { public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence) { this.ClassId = ClassId; this.Confidence = Confidence; this.Rect = Rect; this.Class = Class; } public string Class { get; set; } public int ClassId { get; set; } public float Confidence { get; set; } public Rect Rect { get; set; } } }