闽公网安备 35020302035485号
import time
# 堆代码 duidaima.com
# List of numbers to process
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# Function to square a number
def square_number(number):
time.sleep(1) # Simulate a time-consuming task
return number * number
# Using a for loop to process each number
squared_numbers = []
start_time = time.time()
for number in numbers:
squared_numbers.append(square_number(number))
end_time = time.time()
print("Squared numbers:", squared_numbers)
print("Time taken:", end_time - start_time, "seconds")
# Time taken: 10.082990884780884 seconds
这个脚本按顺序处理列表中的每个数字,由于 square_number 函数中的 time.sleep(1) 调用,每个数字耗时 1 秒。总执行时间为 10.1 秒。import time
from concurrent.futures import ThreadPoolExecutor
# List of numbers to process
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# Function to square a number
def square_number(number):
time.sleep(1) # Simulate a time-consuming task
return number * number
# Using ThreadPoolExecutor for multithreading
squared_numbers = []
start_time = time.time()
with ThreadPoolExecutor(max_workers=10) as executor:
results = executor.map(square_number, numbers)
# Collect the results
squared_numbers = list(results)
end_time = time.time()
print("Squared numbers:", squared_numbers)
print("Time taken:", end_time - start_time, "seconds")
# Time taken: 2.0257720947265625 seconds
在这个优化的脚本中,我们使用 ThreadPoolExecutor 创建一个线程池。executor.map 函数将 square_number 函数分布到线程中,以并行方式处理数字。通过将 max_workers 设置为 5,我们允许最多 5 个线程同时运行,这应该会显著减少总处理时间。请随意调整 max_workers 参数,以找到特定用例的最佳线程数。模拟:同时运行多个模拟或蒙特卡洛实验。
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
# Decorator to add multithreading
def multithreaded(max_workers=5):
def decorator(func):
def wrapper(*args, **kwargs):
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_args = {executor.submit(func, arg): arg for arg in args[0]}
results = []
for future in as_completed(future_to_args):
arg = future_to_args[future]
try:
result = future.result()
except Exception as exc:
print(f'{arg} generated an exception: {exc}')
else:
results.append(result)
return results
return wrapper
return decorator
# Function to square a number
@multithreaded(max_workers=5)
def square_number(number):
time.sleep(1) # Simulate a time-consuming task
return number * number
# List of numbers to process
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# 堆代码 duidaima.com
# Using the decorated function
start_time = time.time()
squared_numbers = square_number(numbers)
end_time = time.time()
print("Squared numbers:", squared_numbers)
print("Time taken:", end_time - start_time, "seconds")
使用装饰器处理多线程不仅简化了代码,还使其更可重用和更清晰。你可以轻松地将 @multithreaded 装饰器应用于任何需要并行执行的函数,为优化你的 Python 代码提供了一种灵活而强大的方式。